\qquad
Section 2.3 Product and Quotient Rules and Higher-Order Derivatives

THEOREM 2.7 The Product Rule

The product of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f g$ is the first function times the derivative of the second, plus the second function times the derivative of the first.

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

PROOF

$$
\begin{aligned}
\frac{d}{d x}[f(x) g(x)] & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x+\Delta x) g(x)+f(x+\Delta x) g(x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left[f(x+\Delta x) \frac{g(x+\Delta x)-g(x)}{\Delta x}+g(x) \frac{f(x+\Delta x)-f(x)}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0}\left[f(x+\Delta x) \frac{g(x+\Delta x)-g(x)}{\Delta x}\right]+\lim _{\Delta x \rightarrow 0}\left[g(x) \frac{f(x+\Delta x)-f(x)}{\Delta x}\right] \\
& =\lim _{\Delta x \rightarrow 0} f(x+\Delta x) \cdot \lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} g(x) \cdot \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
\end{aligned}
$$

Note:
The Product Rule can be extended to cover products involving more than two factors. For example, if f, g, and h are differentiable functions of x, then

$$
\frac{d}{d x}[f(x) g(x) h(x)]=f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x) .
$$

Ex. 1 Find the derivative of $g(x)=(-7 x+9)\left(5 x^{3}-4\right)$.

Ex. 2 Find the derivative of $h(t)=\sqrt{t} \sin (t)$.

THEOREM 2.8 The Quotient Rule

The quotient f / g of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$. Moreover, the derivative of f / g is given by the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}, \quad g(x) \neq 0
$$

PROOF

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] & =\lim _{\Delta x \rightarrow 0} \frac{\frac{f(x+\Delta x)}{g(x+\Delta x)}-\frac{f(x)}{g(x)}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{g(x) f(x+\Delta x)-f(x) g(x+\Delta x)}{\Delta x g(x) g(x+\Delta x)} \\
& =\lim _{\Delta x \rightarrow 0} \frac{g(x) f(x+\Delta x)-f(x) g(x)+f(x) g(x)-f(x) g(x+\Delta x)}{\Delta x g(x) g(x+\Delta x)} \\
& =\frac{\lim _{\Delta x \rightarrow 0} \frac{g(x)[f(x+\Delta x)-f(x)]}{\Delta x}-\lim _{\Delta x \rightarrow 0} \frac{f(x)[g(x+\Delta x)-g(x)]}{\Delta x}}{\lim _{\Delta x \rightarrow 0}[g(x) g(x+\Delta x)]} \\
& =\frac{g(x)\left[\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\right]-f(x)\left[\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}\right.}{\lim _{\Delta x \rightarrow 0}[g(x) g(x+\Delta x)]} \\
& =\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
\end{aligned}
$$

Ex. 3 Find the derivative of $g(t)=\frac{3 t^{2}-6}{-5 t+4}$.

Ex. 4 Find the derivative of $f(a)=\frac{7 \cos (a)}{6 a^{2}}$.

Ex. 4 Find the equation of the tangent line to the graph of $f(x)=\frac{(x-1)}{(x+1)}$ at $\left(2, \frac{1}{3}\right)$.
\square

Ex. 5 Use of the Constant Multiple Rule:

Original Function
Rewrite
a. $y=\frac{x^{2}+3 x}{6}$
$y=\frac{1}{6}\left(x^{2}+3 x\right)$
Differentiate
$y^{\prime}=\frac{1}{6}(2 x+3)$
$y^{\prime}=\frac{5}{8}\left(4 x^{3}\right)$
$y^{\prime}=\frac{5}{2} x^{3}$
c. $y=\frac{-3\left(3 x-2 x^{2}\right)}{7 x}$
$y=-\frac{3}{7}(3-2 x)$
$y^{\prime}=-\frac{3}{7}(-2)$
$y^{\prime}=\frac{6}{7}$
d. $y=\frac{9}{5 x^{2}}$
$y=\frac{9}{5}\left(x^{-2}\right)$
$y^{\prime}=\frac{9}{5}\left(-2 x^{-3}\right)$
$y^{\prime}=-\frac{18}{5 x^{3}}$

THEOREM 2.9 Derivatives of Trigonometric Functions

$$
\begin{aligned}
\frac{d}{d x}[\tan x] & =\sec ^{2} x & \frac{d}{d x}[\cot x] & =-\csc ^{2} x \\
\frac{d}{d x}[\sec x] & =\sec x \tan x & \frac{d}{d x}[\csc x] & =-\csc x \cot x
\end{aligned}
$$

Ex. 6 Find the derivatives of the following functions:
(a) $\frac{d}{d x}[\tan (x)]=$
(b) $\frac{d}{d x}[\sec (x)]=$
(c) $\frac{d}{d x}[\cot (x)]=$
(d) $\frac{d}{d x}[\csc (x)]=$

Ex. 7 Find the derivative of $f(w)=\tan (w) \cot (w)$.

Ex. 8 Find the derivative of $h(\theta)=5 \theta \sec (\theta)+\theta \tan (\theta)$.

Ex. 9 Find the equation of the tangent line to the graph of $N(x)=\sec (x)$ at $\left(\frac{\pi}{3}, 2\right)$.

Higher-Order Derivatives

NOTE The second derivative of f is the derivative of the first derivative of f.

Ex. 10 Find the second derivative of $f(x)=8 x^{6}-10 x^{5}+5 x^{3}$.

Ex. 11 Find the third derivative of $f(x)=2-\frac{2}{x}$.

Ex. 12 Determine the point(s) at which the graph of $g(x)=\frac{x^{2}}{x^{2}+1}$ has a horizontal tangent line.

Ex. 13 Given $p(x)=f(x) g(x)$ and $p(x)=\frac{f(x)}{g(x)}$, use the graphs of f and g to find the following derivatives:
(a) Find $p^{\prime}(4)$.
(b) Find $q^{\prime}(7)$.

